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Abstract

The heavy-tailed bandit problem, introduced by Bubeck et al. [2013], is a variant of the
stochastic multi-armed bandit problem where the reward distributions have finite absolute raw
moments of maximum order 1+ϵ, uniformly bounded by a constant u < +∞, for some ϵ ∈ (0, 1].
In this technical note, we provide a lower bound for the regret of every algorithm that adapts
to u, i.e., is unaware of the value of u or of any upper bound of it. Our bound closely follows
the style of the one proposed in Hadiji and Stoltz [2020], and exposes a trade-off between the
instance-dependent and the worst-case rates.

1 Preliminaries

We recall some fundamental notions on heavy-tailed bandits and the required notations for regret
rates defined in Hadiji and Stoltz [2020].

In the stochastic multi-armed bandit problem (MAB), a learner is faced withK ∈ N arms repeatedly
for T ∈ N rounds. Every time an action i ∈ [K] is selected, a reward X is sampled from the
distribution νi. We call ν := {νi}i∈[K] an instance. Let Hϵ,u be the set of instances such that

Hϵ,u := {ν : Eνi [|X|1+ϵ] ≤ u ∀νi ∈ ν},

where ϵ ∈ (0, 1] and u ∈ R+. We call the bandit problem over the instances defined in this way a
heavy-tailed bandit problem. Let µi := EX∼νi [X] and It be the action selected at round t ∈ [T ].
Then, the learner’s goal is to minimize the expected cumulative regret, defined as:

E[RT (ν)] := E
[ ∑
t∈[T ]

(µ∗ − µIt)

]
, where µ∗ := max

i∈[K]
µi.

It is customary to provide theoretical guarantees for an algorithm by upper-bounding its expected
cumulative regret. Here, we are interested in algorithms that are unaware of u or any other
possible information about it, such as an upper bound. This setting is called adaptive HTMAB,
and in particular u-Adaptive since the adaptation only concerns u. The problem of adaptation
in HTMAB recently gained popularity, and we refer to Genalti et al. [2024] for a comprehensive
literature review on the problem. There are two main ways to express bounds over the expected
cumulative regret.
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Definition 1.1 (Moment-free distribution-free regret bounds). A strategy for stochastic, heavy-
tailed bandits is adaptive to the unknown moment u of order 1+ϵ with a moment-free distribution-
free regret bound Φfree : N → [0,+∞) if for all real numbers u, the strategy ensures, without the
knowledge of u:

∀ν ∈ Hϵ,u, ∀T ≥ 1, RT (ν) ≤ u
1

1+ϵΦfree(T ).

Definition 1.2 (Distribution-dependent rates for adaptation). A strategy for stochastic, heavy-
tailed bandits is adaptive to the unknown centered moment u of order 1 + ϵ with a distribution-
dependent rate Φdep : N → [0,+∞) if for all real numbers u, the strategy ensures, without the
knowledge of u:

∀ν ∈ Hϵ,u, lim sup
T→+∞

RT (ν)

Φdep(T )
< +∞.

2 Lower Bound

We closely follow the procedure developed in Hadiji and Stoltz [2020], together with the instance
construction of Bubeck et al. [2013]. We show that there exists a trade-off between the distribution-
free and the distribution-dependent regret bounds, for any algorithm that is adaptive to u.

Theorem 2.1 (Existence of a trade-off). A strategy with scale-free distribution-free rate of Φfree(T ) =
o(T ) may only achieve distribution-dependent rates Φdep(T ) for adaptation satisfying:

Φdep(T )Φfree(T )
1+ϵ
ϵ ≥ T

1+ϵ
ϵ ,

more precisely, the regret of such a strategy is lower bounded as follows, ∀ν ∈ Hϵ,u:

lim inf
T→+∞

RT (ν)

(T/Φfree(T ))
1+ϵ
ϵ

≥ 1

16

∑
i:∆i>0

∆i.

Proof. Consider an instance ν ∈ Hϵ,u s.t. there’s at least a suboptimal arm a. For this arm,
assume µa := Eνa [X] and u := Eνa [|X|1+ϵ]. Let the suboptimality gap for arm a be ∆a. For some
β ∈ [0, 1], we also consider the alternative instance ν ′, where all distributions are the same as ν
except for ν ′a = (1− β)νa + βδµa+2∆aβ−1 . We have that Eν′ [X] = µa +2∆a and u′ := Eν′ [|X|1+ϵ] =

(1− β)u+ β
(
µa +

2∆a
β

)1+ϵ
. Note that ∆′

a = ∆a. We also compute KL(νa||ν ′a) = ln
(

1
1−β

)
.

For β < 1
2 , we have that ln

(
1

1−β

)
< 2β ln 2.

Moreover

KL(p, q) ≥ p ln p+ (1− p) ln(1− p)︸ ︷︷ ︸
≥− ln 2

+ p ln
1

q︸ ︷︷ ︸
≥0

+(1− p) ln
1

1− q

≥ (1− p) ln

(
1

1− q

)
− ln 2 ∀p, q ∈ [0, 1].
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We use these inequalities together with the fundamental fact that

KL

(
Eν [Na(T )]

T
,
Eν′ [Na(T )]

T

)
≤ Eν [Na(T )] ln

(
1

1− β

)
to obtain the following:(

1−
Eν [Na(T )]

T

)
ln

(
1

1− Eν′ [Na(T )]/T

)
− ln 2 ≤ (2β ln 2)Eν [Na(T )]. (1)

Now it’s time to use Definition 1.1:

∆aEν [Na(T )] ≤ RT (ν) ≤ u
1

1+ϵΦfree(T ), (2)

similarly, it holds

∆a(T − Eν′ [Na(T )]) = ∆′
a(T − Eν′ [Na(T )]) ≤ RT (ν

′) ≤ (u′)
1

1+ϵΦfree(T ). (3)

We now plug Eq.(2)-(3) in Eq.(1):(
1−

u
1

1+ϵΦfree(T )

T∆a

)
ln

(
T∆a

(u′)
1

1+ϵΦfree(T )

)
− ln 2 ≤ (2β ln 2)Eν [Na(T )]. (4)

We now take β = βT = α−1
(
Φfree(T )

T

) 1+ϵ
ϵ

for some constant α > 0. By assumption, Φfree(T ) =

o(T ), so βT → 0 if T → +∞.

Substituting in the definition of u′, and taking the limit, yields:

lim inf
T→∞

u′T = lim inf
T→∞

(
(1− βT )u+ βT (µa + 2∆aβ

−1
T )1+ϵ

)
= lim inf

T→∞

(
u+ βT

(
µ1+ϵ
a + (2∆aβ

−1
T )1+ϵ − u

))
= lim inf

T→∞

(
u+ (2∆a)

1+ϵβ−ϵ
T

)
= lim inf

T→∞

(
u+ αϵ(2∆a)

1+ϵ

(
T

Φfree(T )

)1+ϵ
)

= lim inf
T→∞

αϵ(2∆a)
1+ϵ

(
T

Φfree(T )

)1+ϵ

,

which implies

lim inf
T→∞

(u′T )
1

1+ϵΦfree(T ) = α
ϵ

1+ϵ 2∆aT.

Substituting in the LHS of Eq.(4), we get:

lim inf
T→∞

(
1−

u
1

1+ϵΦfree(T )

T∆a

)
ln

(
T∆a

(u′T )
1

1+ϵΦfree(T )

)
− ln 2 =

= lim inf
T→∞

ln

(
T∆a

α
ϵ

1+ϵ 2∆aT

)
− ln 2

= ln

(
1

4α
ϵ

1+ϵ

)
.
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We now choose α = 8−
1+ϵ
ϵ , and by Equation (4) we get:

lim inf
T→∞

Eν[Na(T )]

(T/Φfree(T ))
1+ϵ
ϵ

≥ α

2 ln 2
ln

(
1

4α
ϵ

1+ϵ

)
≥ 1

16
. (5)

Using regret decomposition, Equation (5) yields a relationship involving the regret in instance ν:

lim inf
T→+∞

RT (ν)

(T/Φfree(T ))
1+ϵ
ϵ

≥ 1

16

∑
i:∆i>0

∆i. (6)

Using Definition 1.2, we also get

Φdep(T )Φfree(T )
1+ϵ
ϵ ≥ T

1+ϵ
ϵ ,

which concludes the proof. ■

If we impose the two rates to be equal, i.e. Φdep = Φfree, we get that Φfree(T ) ≥ Ω
(
T

1+ϵ
1+2ϵ

)
. When

ϵ = 1, we have Ω
(
T

2
3

)
, which is higher than the Ω

(√
T
)
lower bound obtained in bounded range

bandits.
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