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Abstract

The heavy-tailed bandit problem, introduced by Bubeck et al. [2013], is a variant of the
stochastic multi-armed bandit problem where the reward distributions have finite absolute raw
moments of maximum order 1+ ¢, uniformly bounded by a constant u < +o0, for some € € (0, 1].
In this technical note, we provide a lower bound for the regret of every algorithm that adapts
to u, i.e., is unaware of the value of u or of any upper bound of it. Our bound closely follows
the style of the one proposed in Hadiji and Stoltz [2020], and exposes a trade-off between the
instance-dependent and the worst-case rates.

1 Preliminaries

We recall some fundamental notions on heavy-tailed bandits and the required notations for regret
rates defined in Hadiji and Stoltz [2020].

In the stochastic multi-armed bandit problem (MAB), a learner is faced with K € N arms repeatedly
for T € N rounds. Every time an action ¢ € [K] is selected, a reward X is sampled from the
distribution v;. We call v := {Vi}ie[ K] an instance. Let H.,, be the set of instances such that

Hew ={v: E,,Z.[|X|1+€] <u Yy €v},

where € € (0,1] and u € RT. We call the bandit problem over the instances defined in this way a
heavy-tailed bandit problem. Let u; := Ex.,,[X] and I; be the action selected at round ¢ € [T].
Then, the learner’s goal is to minimize the expected cumulative regret, defined as:

E[Rr(v)] = E[ > (ur - uzt)} where  p* = X i
te[T]

It is customary to provide theoretical guarantees for an algorithm by upper-bounding its expected
cumulative regret. Here, we are interested in algorithms that are unaware of w or any other
possible information about it, such as an upper bound. This setting is called adaptive HTMAB,
and in particular u-Adaptive since the adaptation only concerns u. The problem of adaptation
in HTMAB recently gained popularity, and we refer to Genalti et al. [2024] for a comprehensive
literature review on the problem. There are two main ways to express bounds over the expected
cumulative regret.



Definition 1.1 (Moment-free distribution-free regret bounds). A strategy for stochastic, heavy-
tailed bandits is adaptive to the unknown moment u of order 1+ ¢ with a moment-free distribution-
free regret bound ® ¢yc. : N — [0, +00) if for all real numbers u, the strategy ensures, without the
knowledge of u:

Vv e %e,u; VT > 1, RT(H) < U%Jreq)free(T)-

Definition 1.2 (Distribution-dependent rates for adaptation). A strategy for stochastic, heavy-
tailed bandits is adaptive to the unknown centered moment u of order 1 + ¢ with a distribution-
dependent rate @4, : N — [0,400) if for all real numbers u, the strategy ensures, without the

knowledge of wu:

: Rr(v)
Vv € Heu, limsup ——— < +o0.
o o T—>+o£) q)dep(T)

2 Lower Bound

We closely follow the procedure developed in Hadiji and Stoltz [2020], together with the instance
construction of Bubeck et al. [2013]. We show that there exists a trade-off between the distribution-
free and the distribution-dependent regret bounds, for any algorithm that is adaptive to .

Theorem 2.1 (Existence of a trade-off). A strategy with scale-free distribution-free rate of ® (1) =
o(T') may only achieve distribution-dependent rates ®g4.,(7") for adaptation satisfying:

1+e 1+e

(I)dep(T)q)free(T) e >T« 5

more precisely, the regret of such a strategy is lower bounded as follows, Vv € H, ,:

lim inf fr(v) e % Z A;.
T=oo (T/(I)free(T)) € 2:A;>0

v

Proof. Consider an instance v € He, s.t. there’s at least a suboptimal arm a. For this arm,
assume fi, == E, [X] and u = E,, [|X|'7¢]. Let the suboptimality gap for arm a be A,. For some
B € [0,1], we also consider the alternative instance v/, where all distributions are the same as v
except for v/, = (1 — B)va + B86,, 12n,5-1- We have that B,/ [X] = p1q + 24, and o' == E,/[| X[T] =

1+e
(1-pBu+p (Ma + 2A“) . Note that A/, = A,. We also compute K L(v,4||v,) = In (ﬁ) )

B

For g < %, we have that In (ﬁ) < 2B1n2.

Moreover

1 1
KL(p,q) > plnp+ (1 —p)In(1 —p)+p1n5+(1 —p)ln 1

>—1n2 S~—~—
>0
1



We use these inequalities together with the fundamental fact that

s (B0 BANDN g (1)

to obtain the following:

<1 - W) In <1 . Ey/[]ta(T)]/T) “1n2 < (281n2)E, [Na(T)]. (1)
Now it’s time to use Definition 1.1:
AaEg[Na(T)] < RT(Z) < Ulﬁieq)free(T)a (2)
similarly, it holds
AulT = By [Na(T)]) = AL (T — By [No(T)]) < Rr(V/) < () 750y (T). (3)
We now plug Eq.(2)-(3) in Eq.(1):
(1 B uw;{jzje(T)) In ((u’)iﬁf;e(ﬂ) —1In2 < (28I 2)E,[N4(T)]. (4)

1+e
We now take 8 = 7 = a~* (%E(T)) ° for some constant a > 0. By assumption, @ e (T) =

o(T), so pr — 0if T — +oo.

Substituting in the definition of v/, and taking the limit, yields:
liz inf ul = lim inf (1= Br)u+ Br(a +28087")17°)
= liminf (u+ Br (g™ + (20871 — u))
— 00

T 1+epn—e¢
= liminf (u+ (24,)"*5;°)

" T 1+4€

- T 1+e€
it o0 ()

which implies

lim inf (u/) THe D pree(T) = aT<2A,T.

T—o00

Substituting in the LHS of Eq.(4), we get:

1
T+ T
lim inf 1_% In 1TACL —In2=
e T () 52 e (T)

TA,
= liminfln <5> —In2
T—o0 v l+te 2AQT

(o)
=In - )
4o T+e




We now choose @ = 8_%, and by Equation (4) we get:

lim inf By ()] o > a ln< 16 ) > i (5)
T—o0 (T/q)free(T)) P 2In2 Aoy T+e 16

Using regret decomposition, Equation (5) yields a relationship involving the regret in instance v:

1
lim inf Rr(v) o > T Z A,. (6)
Treo (T/(I)free(T)) € i:A;>0
Using Definition 1.2, we also get
1+e¢ 1+€

(pdep(T)q)free(T) « >T« ’

which concludes the proof. [

If we impose the two rates to be equal, i.e. Pgep = P free, We get that @ e (7)) > (T%) When

e =1, we have 2 (T%>, which is higher than the (\/T) lower bound obtained in bounded range
bandits.
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